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Formulation of Atmospheric General Circulation 
Models (AGCM)

Grid-point method : The atmospheric dynamical variables
in space and time are solved on a finite difference grid

Spectral method: Here, the atmospheric dynamical fields
over the globe are represented in the form of waves using
spherical harmonics. The spectral technique comes under
the class of Galerkin methods and is very useful in
numerically solving linear and nonlinear (partial)
differential equations







History
•Haurwitz (1940) initiated the use of the spherical harmonics to solve two-

dimensional non-divergent vorticity equation in the spherical domain.

•Silberman (1954) extended the treatment of nonlinear advection terms using

the interaction coefficient method, which requires large memory allocations

and therefore it was an undesirable proposition.

•Later Platzman (1960), Baer and Platzman (1961), and Kubota et al. (1961),

Ellsaesser (1966), Robert (1966) and others analysed many of the

mathematical characteristics of spectral technique.

•Eliasen et al. (1970) and Orszag (1970) independently developed the

transform method for evaluation of the nonlinear terms. The transform

method ultimately popularized the spectral method for studies of general

circulation and numerical weather prediction at the operational and research

centers (Bourke, 1972, 1974, 1977; Eliasen and Machenhauer, 1974, Sela,

1980).



Advantages

•Accurate evaluation of the nonlinear advection terms

•Nice conservation properties (eg. Spectral methods of solving barotropic non-
divergent models conserve area-averaged mean square kinetic energy and
mean square vorticity – two quantities that fail to be conserved with some
finite different methods).

•Ease of modelling flow over the entire globe. Mapping of the sphere in
spectral models automatically makes a more uniform grid spacing that is
common with finite difference models.

•One of the problems with finite difference approach is that near the poles,
constant longitudinal increments, yield small geographical east-west distances
between grid-points, and these very small distances limit the time step due to
CFL criterion. The spectral technique is free from polar singularities

•Easy implementation of semi-implicit time integration schemes

•Fewer computations as compared to grid-point models at the same horizontal
resolution.

•Accurate and stable numerics

Disadvantages

•Difficulties in handling discontinuity – Gibbs phenomena





Representation of any field around latitude circles as a sum of 
sine and cosine functions.  Computation of the Fourier Harmonics 
using Fast Fourier Transforms (FFT)
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Fourier representation and FFT

Inverse FFT allows reconstruction of the field around latitude 
circles using the Fourier Harmonics





Spectral Representation
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where                  ;       are the spherical harmonic coefficients, also 

known as spectral coefficients and are complex in nature;              is 

the associated Legendre polynomial, of degree l and order m; a is the 

radius of the earth; m represents zonal wave number;  l – m denotes 

meridional wave number; J is the wave number truncation and K is 

the highest degree of associated Legendre polynomial (depends on 

the Truncation scheme used).  The factor describes the east-

west variation, and the factor            describes the north-south 

variation of the spherical harmonic wave.  
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Source: Krishnamurti et al. 2006
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Legendre Representation

• Legendre Polynomials

• Associated Legendre Polynomials

 
1,....,2,1,0

)1(

!2

1
)(

2




 



 l

d

d

l
p

l

ll

ll

  )(1)(
2/2 


 lk

k
kk

l p
d

d
p 

Degree = l 
Order = k
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For details about the proof, please see Krishnamurti et al. 2006
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It can be shown that 
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For computing spectral coefficients (i.e., coefficients of spherical harmonics), we compute 

integrals in the north-south direction using the Gaussian Quadrature.



Spectral transform technique

Atmospheric variables can be transformed from grid domain to spectral domain
and vice-versa. For example, a dynamical variable on a lat-lon grid (Gaussian
grid) is transformed to spectral coefficients as follows

Fourier harmonics are evaluated at each Gaussian latitude through FFT. Here
Nlong are the number of longitudes.

The spectral coefficients are finally obtained via the inverse Legendre
transformation at of the Gaussian latitudes – using the Gaussian Quadrature.
Here Nlat correspond the number of latitude circles and wj are the Gaussian
Weights
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Truncation
a) Rhomboidal truncation
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Figure:  Rhombodial truncation
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b) Triangular Truncation
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Figure:  Triangular truncation 
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• Aliasing : If we have 2N + 1 grid points, we represent them into N 

waves by analyzing them into a maximum of N-Fourier (N-sine and N-

cosine) components.  If one tries to resolve more than N waves out of 

2N +1 data points, a false representation (aliasing) of lower wave 

numbers into higher wave numbers occurs. So, the number of grid-

points should be chosen such that the computations are free from 

aliasing.

• In addition to alias free computations,  the FFT computations require 

that the number of grid points along the zonal direction satisfy N = No2
p 

(where No = 1 or 3 or 5  and p is positive).  For example: for T42 

truncation, N=42 thus N_Nlon = 3N+1  < 128.  Note that 128=27.

• For Legendre transform in the meridional (North-South) direction we 

need to have more than N_Nlat = (3N+1)/2 grid points in case of 

triangular truncation and more than N_Nlat = (5N+1)/2 grid points for 

rhomboidal truncation. 

Choice of grid size



Table I. Truncations for wave number J.

Rhomboidal: No. of Gaussian latitudes  (5J+1)/2 and No. of points per latitude circles > (3J+1)

Total number of spectral coefficients  2(J+1)2 . 
Triangular: No. of Gaussian latitudes  (3J+1)/2 and No. of points per latitude circles > (3J+1)

Total number of spectral coefficients  (J+1)(J+2). 

S.N

o.

Wave 

number 

truncation

No. of 

Gaussion 

latitudes 

(latitude 

circles)

over 0-180O

Grid size in 

Latitudinal 

direction in 

degree

No. of 

points per 

latitude 

circle
0-360O

Grid size in 

Longitudinal 

direction in 

degree

Total no. of grid 

points.

Total no. of 

spectral 

coefficients

Rhomboidal Truncation

1 R 7 20 9 24 15 480 98

2 R 12 32 5.625 48 7.5 1536 288

3 R 15 40 4.5 64 (48) 5.5 (7.5) 2560 (1920) 512

4 R 21 54 3.3 64 5.5 3456 882

5 R 24 62 2.9 80 4.5 4960 1152

6 R 30 80 2.25 96 3.75 7680 1922

7 R 40 100 1.8 128 2.8 12800 3200

Triangular Truncation

8 T 15 24 7.5 48 7.5 1152 272

9 T 30 48 3.75 96 3.75 4608 992

10 T 40 64 2.8 128 2.8 8192 1722

11 T42 64 2.8 128 2.8 8192 1892

12 T62 94 1.9 192 2.5 18048 4032

13 T 63 96 1.875 192 1.875 18432 4095

14 T 80 128 1.4 256 1.4 32768 6642

15 T 95 144 1.25 288 1.25 41472 9312

16 T 126 190 0.9 384 0.9 73960 16256



Left  panel :   m = 1 ,  l = 3

Right panel:   m = 2 ,  l = 3





Effect of various horizontal truncations on the 500 hPa geopotential 

Height (m) of  2.5 x 2.5  lat-lon data.  Rhomboidal R5,  R15,  R30 and 

the original data on 2.5o x 2.5o grid  (ALL WAVES)
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Thanks for your kind 
attention!


